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Abstract 

We ex(lJnine various solutions of the strong-CP problem to determine 

their sex&&y to possible violations of global symmetries by Planck scale 

physics. vrihile some solutions remain viable even in the face of such effects, 

violations of the Peccei-Quinn (PQ) symmetry by non-renormalizable op- 

erators of dimension less than 10 will generally shift the value of 8 to values 

inconsistent with the experimental bound 8 5 IO-‘. We show that it is 

possible to construct axion models where gazLge symmetries protect PQ 

symmetry to the requisite level. 
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It is well known that there are two contributions to CP violation in the stan- 

dard model. First, QCD instantons induce a term LQCD = 0 tr GG in the effective 

Lagrangian, which violates both P and CP [I]. H ere, .9 is a dimensionless coupling 

constant, which one might naively expect to be of order unity. Second, the quark mass 

matrix can be complex, leading to a CP-violating phase in the Kobayashi-Maskawa 

mixing matrix. The phase of the quark mass matrix gives rise to an additional con- 

tribution eQFD = argdet M, to the coeffiecient of trGG. The degree of strong-CP 

violation is controlled by the parameter 3 = 8 + argdet M,, which is constrained by 

measurements of the electric dipole moment of the neutron to be less than 10eg 121. 

The strong-CP problem is that there is no reason for these two contributions, which 

arise from entirely different sectors of the standard model, to sum to zero to such high 

accuracy. 

The solutions that have been proposed for the strong-CP problem fall into three 

general classes. First, there are those that rely on the existence of an extra global U(l).., 
i 

symmetry. This symmetry arises naturally if one or more of the quark masses are zero 

[3]. In this case, it can be shown that the QCD 6 parameter becomes unobservable. 

This solution is considered unattractive, since experimental evidence implies that it is 

unlikely that any of the quarks are massless. Peccei and Quinn [4] (PQ) proposed a 

solution to the strong-CP problem in which they introduced an auxiliary, chiral U(l)po 

symmetry that is spontaneously broken at a scale f., giving rise to a Nambu-Goldstone 

boson a knomthe axion [5]. This symmetry is explicitly broken by instanton effects. 

This explicit bang generates a mass for the axion of order rn, w A’lf., where A is 

the QCD scale. The important point is that the effective potential for the axion has its 

minimum at (c/fa) = -3. It follows that when the axion field relaxes to its minimum, 

the coefficient of tr GG is driven to zero. This solution has received the most attention 

and has been explored by many authors. 



A second class of solutions involve models where an otherwise exact CP is either 

softly or spontaneously broken. Specific models have been proposed where 8 is calcu- 

lably small and within the experimental limits [6]. 

A third class of solutions involve the action of wormholes [7]. As we will argue 

below, wormholes can break global symmetries explicitly, thus giving rise to potentially 

large contributions to 8. However, under certain assumptions, it can be shown that 

wormholes actually have the effect of setting 8 = 0 (71. 

In this letter, we address the question of whether these solutions to the strong-CP 

problem can remain viable if Planck scale effects break global symmetries explicitly. 

There are many arguments suggesting that all global symmetries are violated at some 

level by gravity. First, no-hair theorems tell us that black holes are able to swallow 

global charge. This allows for a gedanken experiment in which a quanta with global 

charge “scatters” with a black hole, leaving only a slightly more massive black hole, but 

one with indeterminate global charge as dictated by the no-hair theorem. Heuristically, 
i 

if one considers “virtual” black hole states of mass A4 arising from quantum gravity, 

one can integrate them out to yield global charge violating operators suppressed by 

powers of M, where A4 might be as small ss Mp,, the Planck mass. 

Another indication that gravity might not respect global symmetries comes from 

wormhole physics [S]. Wormholes are classical solutions to Euclidean gravity that 

describe changes in topology. Integrating over all wormholes (with a cutoff on their 

size) yields a lomfenergy effective action that contains operators of all dimensions that 

violate global s$?r&tretries [9]. The natural scale of violation in this case is the wormhole 

scale, usually thought to be very near (within an order of magnitude or so) Mpl. 

Without explicit calculations of these effects, we are left with the following pre- 

scription: Due to our lack of understanding of physics at the Planck scale, we have no 

choice but to interpret theories that do not include gravity in a quantum mechanically 
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consistent way as efective field theories with a cutoff at MR. If we adhere rigorously to 

this principle, we are then required to add all higher dimension operators (suppressed 

by powers of Mpl) consistent with the symmetries of the full theory at Mpl. As dis- 

cussed above, it seems very unlikely that the full theory respects global symmetries. 

We note that it would be particularly surprising if the entire theory respects V( l)po, 

since this symmetry is already explicitly broken by instanton effects. We should note 

that similar ideas were noted briefly in the prescient paper of Georgi, Hall, and Wise 

[lo]; however, we are now in a position to be somewhat more specific about the nature 

of the Planck scale effects in question and to explore their consequences. 

We consider fist the implications for the axion model. To be specific, we con- 

sider a generic invisible axion model [II] m which an electroweak singlet 4, charged 

under Ups, is responsible for spontaneous breaking of the PQ symmetry. We may 

parametrize 4 on the vacuum manifold as 4 = (fa/fi) exp(in/f,), where o is the axion 

field. The effects of+he QCD anomaly are to generate a mass for the axion of order 

ma - AZ/f=, where A’ is the QCD scale. A variety of astrophysical and cosmological 

constraints on the axion force f. into a narrow range of 1O’GeV 5 f. s 10”GeV for 

standard axions, or in a still narrower range around IO’GeV for hadronic axions [12]. 

The instanton induced potential for a takes the form [4]: 

v-(a) = A’cos(a/f. + q. (1) 

where 0 is the @X theta angle in a basis where the quark mass matrix is real. While 

dominating the wh integral ‘with instantons is probably a bad approximation in an 

unbroken gauge theory like &CD, there are rigorous results [13] showing that the min- 

imum of v(a) occurs at strong-CP conserving values. 

One possibility is that gravity does not respect U(l)po at all, as is the case if 

wormhole effects are large. In this case, one should include renormalizable operators 
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such as 
. 

AV4) - hf&$’ + h.c. (2) 

Here MW is the wormhole scale, which is expected to be of the order of the Planck 

mass. With the addition of these operators, the PQ symmetry is strongly broken and 

axions never arise at all. 

A second possibility is the V( 1) po is only broken through non-renormalizable oper- 

ators of higher dimension. This can occur if either wormhole effects are suppressed or 

if the PQ symmetry is automatic, i.e., it is present “automatically” when one includes 

all renormalizable terms consistent with a given gauge group. As we shall see below, 

higher dimension operators will also spoil the axion solution to the strong-CP problem 

except possibly in the case of an automatic PQ symmetry, where gauge symmetries can 

eliminate operators up to some required high dimension. 

We now explore the effect upon the axion potential of dimension D operators such 

as 

‘D = hf;,;-, 4’“4b + h.c. (Q#b; a+b=D), (3) 

which explicitly break U( 1)pq. Operators of dimension D will modify the axion poten- 

tial of Eq. (1): 

V(a) = A4 cost /fa+e)+x A, cos(na/fa + 6,,) (n = D, D-2. D-4 ,... ),(4) 

where A,, - w~/Mi?-‘, and 6, is a phase angle. Let us simply analyze the n = 1 

contribution. The extra contribution will shift the minimum of the axion potential away 

from the strong-CP conserving minimum of (a/f.) = -0. Unless e = (a,/fa) + ~3 is less 

than 10e9 the amount of CP violation obtained will be in conflict with experiment. The 

minimumof the axion potential is now determined by f.V’(a) E A4e+A1 sin(e-B+&) = 

0. The magnitude of sin(e - 6’ + 6,) will not, in general, be small, and E w AI/Ad. 
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Since we know e < 10d9, Ai < 10m9h4. For dimension D operators, we expect 

A, N onfF,“IMp~~-‘, Using A = lo-‘GeV, the limit on e translates into the following 

limit on the dimension D of the operator as a function of f. and og: 

05 
89 + log oo 

9 - log ( f./lO1sGeV) 

If Eq. (5) is satisfied, it is very simple to show that the higher-dimension operators will 

have an insignificant effect on the axion mass. In fact, the zero temperature axion mass 

is just m, N A2(1 + c)/f. However, we should note that the temperature dependence 

of the axion mass is quite different in the presence of higher dimensional operators. In 

particular, the mass induced by the higher dimension operators is always “turned on.” 

This may affect axion cosmology in interesting ways. We are currently investigating 

this topic, as well as such effects on other theories (such as Majoron models) relying 

upon Nambu-Goldstone boson physics [14]. 

These results at first seem puzzling, since low-energy physics is not in general sen- 

sitive to physics at the Planck scale. However, Nambu-Goldstone bosons have the 

peculiar property that although they are massless (or very light in the caSe of pseudo- 

Nambu-Goldstone bosons such as the axion), they are not, properly speaking, part 

of the low-energy theory as evidenced by the fact that se&couplings, and couplings 

to light fields are suppressed by a power of a large mass scale. The fact that a light 

particle such as the axion is part of the high-energy sector accounts for its interesting 

properties, but &ao renders it susceptible to high-energy corrections. 

In a generiivisible-axion model, there is no reason why a term such as qk’/Mpl 

could not be generated (here 4 is a gauge-singlet field). This term would give rise to 

unacceptable shifts in 8 unless on 5 10~44~“~~f~~*o’ocev~, which is remarkably small. I3 

there any to avoid this problem? 

There are, in fact, ways to construct axion models which suppress higher dimen- 
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sional operators as needed. This construction is based on the notion of automatic PQ 

symmetries [lo], as described above. We first consider a supersymmetric automatic 

model based on the gauge group Es x U(l)x 115). The superfield content of the model 

is some number of 27’s with X charges fl and a %i with X charge 0. The most 

general renormalizable, gauge-invariant superpotential will only contain terms of the 

form 271 27-i . 3510, where the subscripts denote the U(l)x charges. This auto- 

matically gives rise to a PQ symmetry in which the 27’s have PQ charge +l and the 

%i has PQ charge -2. The lowest dimension operators consistent with gauge invari- 

ance in the superpotential that break the PQ symmetry are terms like 27’, 361s, and 

(27. 27.351)s. These will then give rise to dimension 10 operators in the effective 

Lagrangian. Furthermore, it is relatively easy to see that we can break the gauge 

symmetries and the PQ symmetry spontaneously in such a way so that the final’PQ 

symmetry (a linear combination of the original PQ symmetry and some broken gauge 

symmetries) is broken around 10” GeV. 

It is also possible’to construct automatic PQ models based on supersymmetric 

SU(N) GUT’s that suppress higher dimension operators to any desired level for suf- 

ficiently large N. Models of this type without exotic fermions must all have at least 

four different chiral matter irreducible representations whose Young tableaux consist 

of a single column. Needless to say, these are exceedingly unattractive models. They 

will tend to have many extra families, which in addition to a host of phenomenological 

problems, will praraibly destroy the asymptotic freedom of &CD. 

Planck scale physics may also significantly affect the other solutions for the strong- 

CP problem (16). As described above, the second class of solutions are baaed upon 

models where CP is softly or spontaneously broken. How they fare under Planck 

scale physics depends on whether dimension four operators are generated, or whether 

only higher dimension operators appear. If renormalizable operators can be generated, 
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then the violation of CP by Planck scale effects will give rise to a tr GG term, thus 

regenerating the strong-CP problem (we should note, however, that the coefficient 

of such a term could be exponentially suppressed if it appeared in some controlled 

semiclassical expansion about some classical configuration [9]). 

Let us next consider the case in which only non-renormalizable operators are gen- 

erated by Plan&an physics. In this case, all models with fields that acquire vacuum 

expectation values well below the Planck scale (typically the weak scale), will generate 

corrections to 3 that are highly suppressed by powers of Mpl. In essence, this is nothing 

more than a restatement of the effective field theory philosophy: as long as we consider 

physics at energies below the cutoff of our theory, the dominant effects come from the 

renormalizable operators in the theory. This way of thinking about effective field the- 

ories explains why the PQ solution is so susceptible to possible effects of gravity. The 

problem is that the PQ scale is too close to Mp( while the constraints on 8 are too 

tight. 

Although we haverseen that wormholes are troublesome for models that claim to 

solve the strong-CP problem, there is some indication that wormhole effects themselves 

might drive the QCD 3 parameter to a CP conserving value 171. Within the framework 

of Coleman’s wormhole calculus [17] (which has since been shown to be naive in some 

respects [IS]), 3 became a function of the wormhole parameters. The implementation of 

Coleman’s prescription for determining the value of these parameters was then shown 

to set 8 to a (Bet conserving value. It is not impossible that a more sophisticated 

approach to t& Yaormhole calculus would still lead to a similar situation. However, 

until a better understanding of wormholes and quantum gravity in general is reached, 

this will remain a conjecture. 

In conclusion, we see that Planck-scale physics can have dramatic effects on axion 

physics. If one wants to pursue the axion solution to the strong-CP problem, automatic 
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models such as those presented here are probably the only consistent approach that can 
. 

be taken. We have also argued that the other known solutions are essentially unaffected 

by gravity. The essential difference between the PQ and the non-axionic solutions is 

due to the sensitivity of the Nambu-Goldstone boson to physics at energies near the 

scale of spontaneous symmetry breaking. It remains to be seen whether other facets of 

the axion scenario, such as the axion energy density crisis (191 will be modified by the 

effects considered here. 

In the course of this work we learned that the effect of gravity on the Peccei-Quinn 

mechanism is also being considered by Kamionkowski and March-Russell 1201, and 

by Barr and Seckel [21]. We would like to thank them for calling their work to our 

attention. 
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